Abstract View

Author(s): Swasti Jain, Archana Panday, Hari Singh Gour

Email(s): swasti.jain2108@gmail.com

Address:

    Junior at Denmark High school Cumming GA

Published In:   Volume - 5,      Issue - 1,     Year - 2025

DOI: 10.55878/SES2025-5-1-1  

 View HTML        View PDF

Please allow Pop-Up for this website to view PDF file.

ABSTRACT:
Nonmaterials incredible ability to deliver drugs to precise locations with little side effects and significant therapeutic results has led to their widespread usage in the field of nanomedicine. When employing nanomedicine to treat kidney problems, it is essential to use carriers with remarkable biocompatibility, such as polymeric nanoparticles, liposomes, nanogel, lipid-based nanocarriers, and nanoparticles. A specific type of carrier is chitosan. The specific renal absorption, extended half-life, and customized organ distribution of these carriers both improve and protect the medication efficacy. It's also important to consider the carriers' toxicity and solubility. There will be an extensive inventory of nanocarrier materials presented, as well as an analysis of the benefits and drawbacks of using them to treat kidney disorders and possible future uses.

Cite this article:
Swasti Jain, Archana Panday, Hari Singh Gour (2025), The Nano Revolution: Enhancing Nephrological Treatments through Innovative Carriers, Spectrum of Emerging Sciences, 5 (1) 1-7, 10.55878/SES2025-5-1-1DOI: https://doi.org/10.55878/SES2025-5-1-1


References

[1]    Ruiz-Ortega, M.; Rayego-Mateos, S.; Lamas, S.; Ortiz, A.; Rodrigues-Diez, R.R.(2020). Targeting the progression of chronic kidney disease. Nat. Rev. Nephrol., 16, 269–288.

[2]    P. Formoso, R. Muzzalupo, L. Tavano, G. De Filpo, F.P. Nicoletta.(2016).Nanotechnology for the environment and medicine. Mini Rev. Med. Chem. 16 (8), 668–675.

[3]    G. Oberdo¨rster.(2010)  Safety assessment for nanotechnology and nanomedicine:concepts of nanotoxicology.  J. Intern. Med. 267 (1), 89–105.

[4]    N Nema, R Jain, SK Sukla, APanday. (2015) J. Nanomed. Drug Nano-particle: a release kinetics.Nanotechnol 6, (1).

[5]    X. Huang, Y. Ma, Y. Li, F. Han, W. Lin. (2021). Targeted drug delivery systems for kidney diseasesFront. Bioeng. Biotechnol., 9, Article 683247.

[6]    R.M. Williams, J. Shah, B.D. Ng, D.R. Minton, L.J.Gudas, C.Y. Park, D.A. Heller. (2015).Mesoscale nanoparticles selectively target the renal proximal tubule epithelium. Nano Lett. 15 (4), 2358–2364.

[7]    Sun H, Shi K, Zuo B et al. (2022).Kidney-Targeted Drug Delivery System Based on Metformin-Grafted Chitosan for Renal Fibrosis Therapy. Molecular Pharmaceutics; 19:3075–3084.

[8]     Tang W, Panja S, Jogdeo CM et al. (2022).Study of Renal Accumulation of Targeted Polycations in Acute Kidney Injury. Biomacromolecules; 23, 2064–2074.

 

[9]    A Pandey, SK Shukla, R Jain. (2015). Nanosuspension formulation to improve the dissolution rate of Clonazepam.  International Journal 3 (4), 588-591.

[10]  Pandey, J.; Dubey, R.; Kate, A.; Prasad, B.; Sinha, A.; Mishra, M.S. (2022). Nanomedicines: A Focus on Nanomaterials as Drug Delivery System with Current Trends and Future Advancement. Drug Res., 72, 355–366.

[11]  SKshukla, S pathak, R jain, A pandey. (2020).Nanocarrier drug delivery involves targeting druga kinetic approach. Oxidation communications ,43, (4).

[12]  T.C. Ho, C.C. Chang, H.P. Chan, T.W. Chung, C.W. Shu, K.P. Chuang, T.H. Duh,M.H. Yang, Y.C. Tyan. (2022). Hydrogels: properties and applications in biomedicine. Molecules 27,(9) 2902.

[13]  Jain, K.; Kesharwani, P.; Gupta, U.; Jain, N.K.(2010). Dendrimer toxicity: Let’s meet the challenge. Int. J. Pharm., 394, 122–142.

[14]  Zhou, Y.; Xu, H.; Xu, W.; Wang, B.; Wu, H.; Tao, Y.; Zhang, B.; Wang, M.; Mao, F.; Yan, Y.; et al.(2013).Exosomes released by human umbilical cord mesenchymal stem cells protect against cisplatin-induced renal oxidative stress and apoptosis in vivo and in vitro. Stem Cell Res. Ther,4,34.

[15]  Wang, D.W.; Li, S.J.; Tan, X.Y.; Wang, J.H.; Hu, Y.; Tan, Z.; Liang, J.; Hu, J.B.; Li, Y.G.; Zhao, Y.F.(2021).Engineering of stepwise-targeting chitosan oligosaccharide conjugate for the treatment of acute kidney injury. Carbohydr. Polym., 256, 117556.

[16]  S.M. Grayson, J.M. Fr´echet. (2001). Convergent dendrons and dendrimers: from synthesis to applications. Chem. Rev. 101 ,(12) ,3819–3868.

[17]  Dolman, M.E.; van Dorenmalen, K.M.; Pieters, E.H.; Lacombe, M.; Pato, J.; Storm, G.; Hennink, W.E.; Kok, R.J. (2012). Imatinib-ULS- lysozyme: A proximal tubular cell-targeted conjugate of imatinib for the treatment of renal diseases. J. Control Release, 157, 461–468.

[18]  Zheng, X.P.; Nie, Q.; Feng, J.; Fan, X.Y.; Jin, Y.L.; Chen, G.; Du, J.W.(2020). Kidney-targeted baicalin-lysozyme conjugate ameliorates renal fibrosis in rats with diabetic nephropathy induced by streptozotocin. BMC Nephrol., 21, 174.

[19]  Pan, X.; Xie, F.; Xiao, D.; Zhou, X.; Xiao, J. (2020).Design, Synthesis, and Renal Targeting of Methylprednisolone-Lysozyme. Int. J. Mol. Sci., 21, 1922.

[20]  Engel, J.E.; Williams, M.L.; Williams, E.; Azar, C.; Taylor, E.B.; Bidwell, G.L.; Chade, A.R. (2020).Recovery of Renal Function following Kidney-Specific VEGF Therapy in Experimental Renovascular Disease. Am. J. Nephrol., 51, 891–902.

[21]  Song, S.; Hou, X.; Zhang, W.; Liu, X.; Wang, W.; Wang, X.; Cao, W.; Xia, Y.; Chen, W.; Shi, C. (2022).Specific bFGF targeting of KIM-1 in ischemic kidneys protects against renal ischemia-reperfusion injury in rats. Regen. Biomater. 9, rbac029.

[22]  Ahangarpour, A.; Oroojan, A.A.; Khorsandi, L.; Kouchak, M.; Badavi, M.(2019). Antioxidant, anti-apoptotic, and protective effects of myricitrin and its solid lipid nanoparticle on streptozotocin-nicotinamide-induced diabetic nephropathy in type 2 diabetic male mice. Iran. J. Basic. Med. Sci., 22, 1424–1431.

[23]  Liu, D.; Shu, G.; Jin, F.; Qi, J.; Xu, X.; Du, Y.; Yu, H.; Wang, J.; Sun, M.; You, Y.; et al. (2020).ROS-responsive chitosan-SS31 prodrug for AKI therapy via rapid distribution in the kidney and long-term retention in the renal tubule. Sci. Adv., 6, eabb7422..

[24]  Wang, D.W.; Li, S.J.; Tan, X.Y.; Wang, J.H.; Hu, Y.; Tan, Z.; Liang, J.; Hu, J.B.; Li, Y.G.; Zhao, Y.F.(2021). Engineering of stepwise-targeting chitosan oligosaccharide conjugate for the treatment of acute kidney injury. Carbohydr. Polym., 256, 117556.

 

Related Images:



Recent Images



The Nano Revolution: Enhancing Nephrological Treatments through Innovative Carriers,
Impact of information technology on organizational business performance
Probiotics and their role in food microbiology: a review of health benefits and practical applications.
Probabilistic models for predicting cardiac arrhythmias using machine learning.
The potential for increasing antimicrobial activity in cow dung.
Fatty acid composition of Chara species for nutritional and biofuel implications.
Development and assessment of antimicrobial herbal soap.
Bioplastic synthesis from Water hyacinth: A step towards circular economy
Eichhornia Crassipes leaf extract: Phytochemical analysis and antioxidant activity
Comparing the antibacterial activity of plants against bacteria

Tags


Recomonded Articles:

Author(s): Vania Munjar

DOI: 10.55878/SES2021-1-1-12         Access: Open Access Read More

Author(s): Swasti Jain, Archana Panday, Hari Singh Gour

DOI: 10.55878/SES2025-5-1-1         Access: Open Access Read More