Reference
[1] J.
P. Tilsted, F. Bauer, C. D. Birkbeck, J. Skovgaard, and J. Rootzén, ‘Ending
fossil-based growth: Confronting the political economy of petrochemical
plastics’, One Earth, vol. 6, no. 6, pp. 607–619, 2023.
[2] L. Dessbesell, M. Paleologou, M.
Leitch, R. Pulkki, and C. C. Xu, ‘Global lignin supply overview and kraft
lignin potential as an alternative for petroleum-based polymers’, Renew.
Sustain. Energy Rev., vol. 123, p. 109768, 2020.
[3] J. Hopewell, R. Dvorak, and E.
Kosior, ‘Plastics recycling: challenges and opportunities’, Philos. Trans.
R. Soc. B Biol. Sci., vol. 364, no. 1526, pp. 2115–2126, Jul. 2009, doi:
10.1098/rstb.2008.0311.
[4] P. M. Gopinath et al.,
‘Plastic particles in medicine: a systematic review of exposure and effects to
human health’, Chemosphere, vol. 303, p. 135227, 2022.
[5] ‘Sci-Hub | Plastics and Health Risks.
Annual Review of Public Health, 31(1), 179–194 |
10.1146/annurev.publhealth.012809.103714’. Accessed: Jun. 18, 2024. [Online].
Available:
https://sci-hub.se/https://doi.org/10.1146/annurev.publhealth.012809.103714
[6] R. C. Thompson, C. J. Moore, F. S.
Vom Saal, and S. H. Swan, ‘Plastics, the environment and human health: current
consensus and future trends’, Philos. Trans. R. Soc. B Biol. Sci., vol.
364, no. 1526, pp. 2153–2166, Jul. 2009, doi: 10.1098/rstb.2009.0053.
[7] B. S. Rathi, P. S. Kumar, and G.
Rangasamy, ‘A sustainable approach on thermal and catalytic conversion of waste
plastics into fuels’, Fuel, vol. 339, p. 126977, 2023.
[8] M. Masry, S. Rossignol, J.-L.
Gardette, S. Therias, P.-O. Bussière, and P. Wong-Wah-Chung, ‘Characteristics,
fate, and impact of marine plastic debris exposed to sunlight: A review’, Mar.
Pollut. Bull., vol. 171, p. 112701, 2021.
[9] J. Dąbrowska et al., ‘Marine
waste—Sources, fate, risks, challenges and research needs’, Int. J. Environ.
Res. Public. Health, vol. 18, no. 2, p. 433, 2021.
[10] I. A. Isangedighi, G. S. David, and O.
I. Obot, ‘Plastic waste in the aquatic environment: impacts and management’, in
Analysis of nanoplastics and microplastics in food, CRC Press, 2020, pp.
15–43. Accessed: Sep. 25, 2024. [Online]. Available:
https://www.taylorfrancis.com/chapters/edit/10.1201/9780429469596-2/plastic-waste-aquatic-environment-isangedighi-asuquo-isangedighi-gift-samuel-david-ofonmbuk-ime-obot
[11] M. R. Shaibur, S. Sarwar, and B.
Ambade, ‘Sources and types of plastic caps and properties characterization of
plastic ropes produced from different types of plastic caps’, Heliyon,
vol. 10, no. 15, 2024, Accessed: Sep. 25, 2024. [Online]. Available:
https://www.cell.com/heliyon/fulltext/S2405-8440(24)10502-6
[12] W. C. Li, H. F. Tse, and L. Fok,
‘Plastic waste in the marine environment: A review of sources, occurrence and
effects’, Sci. Total Environ., vol. 566–567, pp. 333–349, Oct. 2016,
doi: 10.1016/j.scitotenv.2016.05.084.
[13] A. Siddiqua, J. N. Hahladakis, and W.
A. K. A. Al-Attiya, ‘An overview of the environmental pollution and health
effects associated with waste landfilling and open dumping’, Environ. Sci.
Pollut. Res., vol. 29, no. 39, pp. 58514–58536, Aug. 2022, doi:
10.1007/s11356-022-21578-z.
[14] K.-H. Lee, N.-S. Noh, D.-H. Shin, and
Y. Seo, ‘Comparison of plastic types for catalytic degradation of waste
plastics into liquid product with spent FCC catalyst’, Polym. Degrad. Stab.,
vol. 78, no. 3, pp. 539–544, Jan. 2002, doi: 10.1016/S0141-3910(02)00227-6.
[15] M. B, Recycling, What A Sham!: A
Concise Yet Enlightening Introduction to Plastic. 2022. [Online].
Available: https://books.google.co.in/books?id=cMyREAAAQBAJ
[16] R. Mori, ‘Replacing all petroleum-based
chemical products with natural biomass-based chemical products: a tutorial
review’, RSC Sustain., vol. 1, no. 2, pp. 179–212, 2023.
[17] N. A. Ismail et al., ‘Synthesis
and Characterization of Biodegradable Starch-Based Bioplastics’, Mater. Sci.
Forum, vol. 846, pp. 673–678, Mar. 2016, doi:
10.4028/www.scientific.net/MSF.846.673.
[18] A. Ahuja, P. Samyn, and V. K. Rastogi,
‘Paper bottles: potential to replace conventional packaging for liquid
products’, Biomass Convers. Biorefinery, vol. 14, no. 13, pp.
13779–13805, Jul. 2024, doi: 10.1007/s13399-022-03642-3.
[19] T. Govil et al.,
‘Lignocellulosic feedstock: A review of a sustainable platform for cleaner
production of nature’s plastics’, J. Clean. Prod., vol. 270, p. 122521,
Oct. 2020, doi: 10.1016/j.jclepro.2020.122521.
[20] P. Ungprasoot, P. Muanruksa, V.
Tanamool, J. Winterburn, and P. Kaewkannetra, ‘Valorization of Aquatic Weed and
Agricultural Residues for Innovative Biopolymer Production and Their
Biodegradation’, Polymers, vol. 13, no. 17, p. 2838, Aug. 2021, doi:
10.3390/polym13172838.
[21] N. Sumrith, L. Techawinyutham, M. R.
Sanjay, R. Dangtungee, and S. Siengchin, ‘Characterization of Alkaline and
Silane Treated Fibers of “Water Hyacinth Plants” and Reinforcement of “Water
Hyacinth Fibers” with Bioepoxy to Develop Fully Biobased Sustainable
Ecofriendly Composites’, J. Polym. Environ., vol. 28, no. 10, pp.
2749–2760, Oct. 2020, doi: 10.1007/s10924-020-01810-y.
[22] N. N. Nasir and S. A. Othman, ‘The
Physical and Mechanical Properties of Corn-based Bioplastic Films with Different
Starch and Glycerol Content.’, J. Phys. Sci., vol. 32, no. 3, 2021,
Accessed: Sep. 25, 2024. [Online]. Available:
https://www.researchgate.net/profile/Siti-Othman-7/publication/356605332_The_Physical_and_Mechanical_Properties_of_Corn-based_Bioplastic_Films_with_Different_Starch_and_Glycerol_Content/links/61a4be5f1dd5bc13e0dd8ae0/The-Physical-and-Mechanical-Properties-of-Corn-based-Bioplastic-Films-with-Different-Starch-and-Glycerol-Content.pdf
[23] M. Alonso-González, M. Ramos, C.
Bengoechea, A. Romero, and A. Guerrero, ‘Evaluation of Composition on
Processability and Water Absorption of Wheat Gluten-Based Bioplastics’, J.
Polym. Environ., vol. 29, no. 5, pp. 1434–1443, May 2021, doi:
10.1007/s10924-020-01969-4.
[24] R. Yahia et al., ‘Biodegradable,
UV absorber and thermal stable bioplastic films from waxy corn starch/polyvinyl
alcohol blends’, Biomass Convers. Biorefinery, Jan. 2023, doi:
10.1007/s13399-022-03683-8.
[25] L. S. Rao, C. D. Naidu, and S. Tiwari,
‘Investigation on synthesis, structure and degradability of starch based
bioplastics’, Mater. Today Proc., vol. 49, pp. 257–261, 2022.