References:
1. Kroto, H.W., et al., C60: Buckminsterfullerene. 1985. 318(6042): p. 162-163.
2. Lu, F., et al., Advances in Bioapplications of Carbon Nanotubes. 2009. 21(2): p. 139-152.
3. Iijima, S.J.n., Helical microtubules of graphitic carbon. 1991. 354(6348): p. 56-58.
4. Ugarte, D.J.N., Curling and closure of graphitic networks under electron-beam irradiation. 1992. 359(6397): p. 707-709.
5. Heidenreich, R.D., W. Hess, and L.J.J.o.A.C. Ban, A test object and criteria for high resolution electron microscopy. 1968. 1(1): p. 1-19.
6. Iijima, S.J.J.o.C.G., Direct observation of the tetrahedral bonding in graphitized carbon black by high resolution electron microscopy. 1980. 50(3): p. 675-683.
7. Street, K., et al., Evaluation of the tribological behavior of nano-onions in Krytox 143AB. 2004. 16(1): p. 143-149.
8. Yao, Y., et al., Tribological property of onion-like fullerenes as lubricant additive. 2008. 62(16): p. 2524-2527.
9. Si, P.-Z., et al., Synthesis and characteristics of carbon-coated iron and nickel nanocapsules produced by arc discharge in ethanol vapor. 2003. 41(2): p. 247-251.
10. Okotrub, A., et al., X-ray emission studies of the valence band of nanodiamonds annealed at different temperatures. 2001. 105(42): p. 9781-9787.
11. Pech, D., et al., Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. 2010. 5(9): p. 651-654.
12. Baker, S.N. and G.A.J.A.C.I.E. Baker, Luminescent carbon nanodots: emergent nanolights. 2010. 49(38): p. 6726-6744.
13. Hu, S., et al., Tunable photoluminescence across the entire visible spectrum from carbon dots excited by white light. 2015. 54(10): p. 2970-2974.
14. Sun, X., C. Brückner, and Y.J.N. Lei, One-pot and ultrafast synthesis of nitrogen and phosphorus co-doped carbon dots possessing bright dual wavelength fluorescence emission. 2015. 7(41): p. 17278-17282.
15. Cao, L., et al., Carbon dots for multiphoton bioimaging. 2007. 129(37): p. 11318-11319.
16. Liu, R., et al., An aqueous route to multicolor photoluminescent carbon dots using silica spheres as carriers. 2009. 48(25): p. 4598-4601.
17. Peng, H. and J.J.C.o.M. Travas-Sejdic, Simple aqueous solution route to luminescent carbogenic dots from carbohydrates. 2009. 21(23): p. 5563-5565.
18. Yang, S.-T., et al., Carbon dots as nontoxic and high-performance fluorescence imaging agents. 2009. 113(42): p. 18110-18114.
19. Berlin, J.M., et al., Effective drug delivery, in vitro and in vivo, by carbon-based nanovectors noncovalently loaded with unmodified Paclitaxel. 2010. 4(8): p. 4621-4636.
20. Iannazzo, D., et al., Graphene quantum dots for cancer targeted drug delivery. 2017. 518(1-2): p. 185-192.
21. Li, L., et al., Focusing on luminescent graphene quantum dots: current status and future perspectives. 2013. 5(10): p. 4015-4039.
22. Liu, R., et al., Bottom-up fabrication of photoluminescent graphene quantum dots with uniform morphology. 2011. 133(39): p. 15221-15223.
23. Yan, X., X. Cui, and L.-s.J.J.o.t.A.C.S. Li, Synthesis of large, stable colloidal graphene quantum dots with tunable size. 2010. 132(17): p. 5944-5945.
24. Zhuo, S., M. Shao, and S.-T.J.A.n. Lee, Upconversion and downconversion fluorescent graphene quantum dots: ultrasonic preparation and photocatalysis. 2012. 6(2): p. 1059-1064.
25. Liu, S., et al., Hydrothermal treatment of grass: a low‐cost, green route to nitrogen‐doped, carbon‐rich, photoluminescent polymer nanodots as an effective fluorescent sensing platform for label‐free detection of Cu (II) ions. 2012. 24(15): p. 2037-2041.
26. Zhu, S., et al., A general route to make non-conjugated linear polymers luminescent. 2012. 48(88): p. 10889-10891.
27. Kim, M., et al., Fluorescent carbon nanotube defects manifest substantial vibrational reorganization. 2016. 120(20): p. 11268-11276.
28. Welsher, K., et al., A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice. 2009. 4(11): p. 773-780.
29. Tisler, J., et al., Fluorescence and spin properties of defects in single digit nanodiamonds. 2009. 3(7): p. 1959-1965.
30. Chang, Y.-R., et al., Mass production and dynamic imaging of fluorescent nanodiamonds. 2008. 3(5): p. 284-288.
31. Wee, T.-L., et al., Preparation and characterization of green fluorescent nanodiamonds for biological applications. 2009. 18(2-3): p. 567-573.
32. Mochalin, V.N. and Y.J.J.o.t.A.C.S. Gogotsi, Wet chemistry route to hydrophobic blue fluorescent nanodiamond. 2009. 131(13): p. 4594-4595.
33. Boudou, J.-P., et al., High yield fabrication of fluorescent nanodiamonds. 2009. 20(23): p. 235602.
34. Molaei, M.J.J.S.E., The optical properties and solar energy conversion applications of carbon quantum dots: A review. 2020. 196: p. 549-566.
35. Demchenko, A.P., M.O.J.M. Dekaliuk, and a.i. fluorescence, Novel fluorescent carbonic nanomaterials for sensing and imaging. 2013. 1(4): p. 042001.
36. Xu, X., et al., Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. 2004. 126(40): p. 12736-12737.
37. Bottini, M., et al., Isolation and characterization of fluorescent nanoparticles from pristine and oxidized electric arc-produced single-walled carbon nanotubes. 2006. 110(2): p. 831-836.
38. Sun, Y.-P., et al., Quantum-sized carbon dots for bright and colorful photoluminescence. 2006. 128(24): p. 7756-7757.
39. Pan, D., et al., Hydrothermal route for cutting graphene sheets into blue‐luminescent graphene quantum dots. 2010. 22(6): p. 734-738.
40. Zhou, X., et al., Photo-Fenton reaction of graphene oxide: a new strategy to prepare graphene quantum dots for DNA cleavage. 2012. 6(8): p. 6592-6599.
41. Zhou, J., et al., An electrochemical avenue to blue luminescent nanocrystals from multiwalled carbon nanotubes (MWCNTs). 2007. 129(4): p. 744-745.
42. Lu, J., et al., One-pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids. 2009. 3(8): p. 2367-2375.
43. Song, Y., et al., Investigation from chemical structure to photoluminescent mechanism: a type of carbon dots from the pyrolysis of citric acid and an amine. 2015. 3(23): p. 5976-5984.
44. Wang, F., et al., Highly Luminescent Organosilane-Functionalized Carbon Dots. 2011. 21(6): p. 1027-1031.
45. Vinci, J.C. and L.A.J.A.c. Colon, Fractionation of carbon-based nanomaterials by anion-exchange HPLC. 2012. 84(2): p. 1178-1183.
46. Yang, Y., et al., One-step synthesis of amino-functionalized fluorescent carbon nanoparticles by hydrothermal carbonization of chitosan. 2012. 48(3): p. 380-382.
47. Liu, C., et al., Nano-carrier for gene delivery and bioimaging based on carbon dots with PEI-passivation enhanced fluorescence. 2012. 33(13): p. 3604-3613.
48. Bourlinos, A.B., et al., Photoluminescent carbogenic dots. 2008. 20(14): p. 4539-4541.
49. Ding, H., et al., Luminescent carbon quantum dots and their application in cell imaging. 2013. 37(8): p. 2515-2520.
50. Fu, M., et al., Carbon dots: a unique fluorescent cocktail of polycyclic aromatic hydrocarbons. 2015. 15(9): p. 6030-6035.
51. Jelinek, R., Characterization and physical properties of carbon-dots, in Carbon quantum dots. 2017, Springer. p. 29-46.
52. Hu, S.-L., et al., One-step synthesis of fluorescent carbon nanoparticles by laser irradiation. 2009. 19(4): p. 484-488.
53. Reckmeier, C., et al., Luminescent colloidal carbon dots: optical properties and effects of doping. 2016. 24(2): p. A312-A340.
54. Loh, K.P., et al., Graphene oxide as a chemically tunable platform for optical applications. 2010. 2(12): p. 1015-1024.
55. Eda, G., et al., Blue photoluminescence from chemically derived graphene oxide. 2010. 22(4): p. 505-509.
56. Demichelis, F., S. Schreiter, and A.J.P.R.B. Tagliaferro, Photoluminescence in a-C: H films. 1995. 51(4): p. 2143.
57. Liu, H., T. Ye, and C.J.A.c. Mao, Fluorescent carbon nanoparticles derived from candle soot. 2007. 119(34): p. 6593-6595.
58. Kanemitsu, Y., et al., Photoluminescence mechanism in surface-oxidized silicon nanocrystals. 1997. 55(12): p. R7375.
59. Ghosh, M., et al., Carbon nano‐onions for imaging the life cycle of Drosophila melanogaster. 2011. 7(22): p. 3170-3177.
60. Sonkar, S.K., et al., Carbon nanocubes and nanobricks from pyrolysis of rice. 2010. 10(6): p. 4064-4067.
61. Li, H., et al., Water‐soluble fluorescent carbon quantum dots and photocatalyst design. 2010. 49(26): p. 4430-4434.
62. Bao, L., et al., Electrochemical tuning of luminescent carbon nanodots: from preparation to luminescence mechanism. 2011. 23(48): p. 5801-5806.
63. Ding, H., et al., Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism. 2016. 10(1): p. 484-491.
64. Zheng, H., et al., Enhancing the luminescence of carbon dots with a reduction pathway. 2011. 47(38): p. 10650-10652.
65. Cayuela, A., et al., Semiconductor and carbon-based fluorescent nanodots: the need for consistency. 2016. 52(7): p. 1311-1326.
66. Sagbas, S. and N. Sahiner, Carbon dots: preparation, properties, and application, in Nanocarbon and its Composites. 2019, Elsevier. p. 651-676.
67. Bourlinos, A.B., et al., Surface functionalized carbogenic quantum dots. 2008. 4(4): p. 455-458.
68. Yang, S., et al., Large-scale fabrication of heavy doped carbon quantum dots with tunable-photoluminescence and sensitive fluorescence detection. 2014. 2(23): p. 8660-8667.
69. Li, L.-s. and X.J.T.J.o.P.C.L. Yan, Colloidal graphene quantum dots. 2010. 1(17): p. 2572-2576.
70. Barman, M.K., et al., Photophysical properties of doped carbon dots (N, P, and B) and their influence on electron/hole transfer in carbon dots–nickel (II) phthalocyanine conjugates. 2014. 118(34): p. 20034-20041.
71. Umrao, S., et al., Microwave bottom-up route for size-tunable and switchable photoluminescent graphene quantum dots using acetylacetone: New platform for enzyme-free detection of hydrogen peroxide. 2015. 81: p. 514-524.
72. Guo, Y., et al., Hydrothermal synthesis of highly fluorescent carbon nanoparticles from sodium citrate and their use for the detection of mercury ions. 2013. 52: p. 583-589.
73. Huang, H., et al., One-pot green synthesis of nitrogen-doped carbon nanoparticles as fluorescent probes for mercury ions. RSC Adv 3: 21691–21696. 2013.
74. Sun, D., et al., Hair fiber as a precursor for synthesizing of sulfur-and nitrogen-co-doped carbon dots with tunable luminescence properties. 2013. 64: p. 424-434.
75. Sun, Y.-P., et al., Doped carbon nanoparticles as a new platform for highly photoluminescent dots. 2008. 112(47): p. 18295-18298.
76. Huang, X., et al., Effect of injection routes on the biodistribution, clearance, and tumor uptake of carbon dots. 2013. 7(7): p. 5684-5693.
77. Liu, Y., C.-y. Liu, and Z.-y.J.A.S.S. Zhang, Synthesis of highly luminescent graphitized carbon dots and the application in the Hg2+ detection. 2012. 263: p. 481-485.
78. Yan, F., et al., Highly photoluminescent carbon dots-based fluorescent chemosensors for sensitive and selective detection of mercury ions and application of imaging in living cells. 2014. 192: p. 488-495.
79. Gonçalves, H.M., et al., Optical fiber sensor for Hg (II) based on carbon dots. 2010. 26(4): p. 1302-1306.
80. Barman, S. and M.J.J.o.M.C. Sadhukhan, Facile bulk production of highly blue fluorescent graphitic carbon nitride quantum dots and their application as highly selective and sensitive sensors for the detection of mercuric and iodide ions in aqueous media. 2012. 22(41): p. 21832-21837.
81. Dong, Y., et al., Polyamine-functionalized carbon quantum dots as fluorescent probes for selective and sensitive detection of copper ions. Anal Chem, 2012. 84(14): p. 6220-4.
82. Zhang, Y.-L., et al., Graphitic carbon quantum dots as a fluorescent sensing platform for highly efficient detection of Fe3+ ions. RSC Advances, 2013. 3(11): p. 3733-3738.
83. Wee, S.S., Y.H. Ng, and S.M. Ng, Synthesis of fluorescent carbon dots via simple acid hydrolysis of bovine serum albumin and its potential as sensitive sensing probe for lead (II) ions. Talanta, 2013. 116: p. 71-6.
84. Zheng, M., et al., On-off-on fluorescent carbon dot nanosensor for recognition of chromium(VI) and ascorbic acid based on the inner filter effect. ACS Appl Mater Interfaces, 2013. 5(24): p. 13242-7.
85. Qian, Z., et al., Highly luminescent N-doped carbon quantum dots as an effective multifunctional fluorescence sensing platform. Chemistry, 2014. 20(8): p. 2254-63.
86. Du, F., et al., A low cytotoxic and ratiometric fluorescent nanosensor based on carbon-dots for intracellular pH sensing and mapping. Nanotechnology, 2013. 24(36): p. 365101.
87. Zhang, S., et al., A fluorescent turn-off/on method for detection of Cu2+and oxalate using carbon dots as fluorescent probes in aqueous solution. Materials Letters, 2014. 115: p. 233-236.
88. Zhao, H.X., et al., Highly selective detection of phosphate in very complicated matrixes with an off–on fluorescent probe of europium-adjusted carbon dots. Chemical Communications, 2011. 47(9): p. 2604-2606.
89. Y. Q. Dong, R.X.W., W. R. Tian, Y. W. Chi and and G.N. Chen, RSC Advances, 2014. 4: p. 3701–3705.
90. Liu, J.-M., et al., Zr(H2O)2EDTA modulated luminescent carbon dots as fluorescent probes for fluoride detection. Analyst, 2013. 138(1): p. 278-283.
91. Hou, X., et al., Carbon-dot-based fluorescent turn-on sensor for selectively detecting sulfide anions in totally aqueous media and imaging inside live cells. Nanotechnology, 2013. 24(33): p. 335502.
92. Yin, B., et al., Green synthesis of carbon dots with down- and up-conversion fluorescent properties for sensitive detection of hypochlorite with a dual-readout assay. Analyst, 2013. 138(21): p. 6551-6557.
93. Yang, Z., et al., Controllable Synthesis of Fluorescent Carbon Dots and Their Detection Application as Nanoprobes. Nano-Micro Letters, 2013. 5(4): p. 247-259.
94. Wang, R., et al., Carbon Quantum Dot-Functionalized Aerogels for NO2 Gas Sensing. Analytical Chemistry, 2013. 85(17): p. 8065-8069.
95. Zhou, Y., et al., A novel composite of graphene quantum dots and molecularly imprinted polymer for fluorescent detection of paranitrophenol. Biosens Bioelectron, 2014. 52: p. 317-23.
96. Cayuela, A., M.L. Soriano, and M. Valcárcel, Strong luminescence of carbon dots induced by acetone passivation: efficient sensor for a rapid analysis of two different pollutants. Anal Chim Acta, 2013. 804: p. 246-51.
97. Lin, Z., et al., Classical oxidant induced chemiluminescence of fluorescent carbon dots. Chemical Communications, 2012. 48(7): p. 1051-1053.
98. Dong, Y., et al., Electrochemiluminescence emission from carbon quantum dot-sulfite coreactant system. Carbon, 2013. 56: p. 12-17.
99. Lin, Z., et al., Peroxynitrous-acid-induced chemiluminescence of fluorescent carbon dots for nitrite sensing. Anal Chem, 2011. 83(21): p. 8245-51.
100. Shi, J., et al., High selectivity sensing of cobalt in HepG2 cells based on necklace model microenvironment-modulated carbon dot-improved chemiluminescence in Fenton-like system. Biosensors and Bioelectronics, 2013. 45: p. 58-64.
101. Xu, Y., et al., Reduced Carbon Dots versus Oxidized Carbon Dots: Photo- and Electrochemiluminescence Investigations for Selected Applications. 2013. 19(20): p. 6282-6288.
102. Dutta, T. and S. Sarkar, Nanocarbon–{[Na10 (PrW10O36)] 2· 130H2O} composite to detect toxic food coloring dyes at nanolevel. 2016. 6(8): p. 1191-1197.
103. Mehta, V.N., S. Jha, and S.K. Kailasa, One-pot green synthesis of carbon dots by using Saccharum officinarum juice for fluorescent imaging of bacteria (Escherichia coli) and yeast (Saccharomyces cerevisiae) cells. Mater Sci Eng C Mater Biol Appl, 2014. 38: p. 20-7.
104. Wang, Y., et al., Carbon dots of different composition and surface functionalization: cytotoxicity issues relevant to fluorescence cell imaging. Exp Biol Med (Maywood), 2011. 236(11): p. 1231-8.
105. Yang, S.T., et al., Carbon Dots as Nontoxic and High-Performance Fluorescence Imaging Agents. J Phys Chem C Nanomater Interfaces, 2009. 113(42): p. 18110-18114.
106. Bourlinos, A.B., et al., Photoluminescent Carbogenic Dots. Chemistry of Materials, 2008. 20(14): p. 4539-4541.
107. Yu, C., et al., Carbon-dot-based ratiometric fluorescent sensor for detecting hydrogen sulfide in aqueous media and inside live cells. Chemical Communications, 2013. 49(4): p. 403-405.
108. Chen, S., et al., Reaction-Based Genetically Encoded Fluorescent Hydrogen Sulfide Sensors. Journal of the American Chemical Society, 2012. 134(23): p. 9589-9592.
109. Liu, C., et al., Nano-carrier for gene delivery and bioimaging based on carbon dots with PEI-passivation enhanced fluorescence. Biomaterials, 2012. 33(13): p. 3604-13.
110. Hsu, P.-C., et al., Extremely high inhibition activity of photoluminescent carbon nanodots toward cancer cells. Journal of Materials Chemistry B, 2013. 1(13): p. 1774-1781.
111. Liu, C., et al., One-step synthesis of surface passivated carbon nanodots by microwave assisted pyrolysis for enhanced multicolor photoluminescence and bioimaging. Journal of Materials Chemistry, 2011. 21(35): p. 13163-13167.
112. Ray, S.C., et al., Fluorescent Carbon Nanoparticles: Synthesis, Characterization, and Bioimaging Application. The Journal of Physical Chemistry C, 2009. 113(43): p. 18546-18551.
113. Posthuma-Trumpie, G.A., et al., Amorphous carbon nanoparticles: a versatile label for rapid diagnostic (immuno)assays. Analytical and bioanalytical chemistry, 2012. 402(2): p. 593-600.
114. Gordon, J. and G. Michel, Analytical sensitivity limits for lateral flow immunoassays. Clin Chem, 2008. 54(7): p. 1250-1.
115. Demchenko, A.P. and M.O. Dekaliuk, Novel fluorescent carbonic nanomaterials for sensing and imaging. Methods Appl Fluoresc, 2013. 1(4): p. 042001.
116. Dutta, T., et al., ROS generation by reduced graphene oxide (rGO) induced by visible light showing antibacterial activity: comparison with graphene oxide (GO). 2015. 5(98): p. 80192-80195.
117. Tao, H., et al., In vivo NIR fluorescence imaging, biodistribution, and toxicology of photoluminescent carbon dots produced from carbon nanotubes and graphite. Small, 2012. 8(2): p. 281-90.
118. Bechet, D., et al., Nanoparticles as vehicles for delivery of photodynamic therapy agents. Trends Biotechnol, 2008. 26(11): p. 612-21.
119. Yang, K., et al., In vivo biodistribution and toxicology of functionalized nano-graphene oxide in mice after oral and intraperitoneal administration. 2013. 34(11): p. 2787-2795.
120. Pakhira, B., et al., Carbon nano onions cross the blood brain barrier. 2016. 6(35): p. 29779-29782.
121. Kumar, A.S., et al., Reversible photo-switching of single azobenzene molecules in controlled nanoscale environments. 2008. 8(6): p. 1644-1648.
122. Zhang, M., et al., Oxygen atom transfer in the photocatalytic oxidation of alcohols by TiO2: oxygen isotope studies. 2009. 121(33): p. 6197-6200.
123. Wang, Q., et al., Photocatalytic aerobic oxidation of alcohols on TiO2: the acceleration effect of a Brønsted acid. 2010. 49(43): p. 7976-7979.
124. Tang, Z.-R., et al., Tuning the optical property and photocatalytic performance of titanate nanotube toward selective oxidation of alcohols under ambient conditions. 2012. 4(3): p. 1512-1520.
125. Chen, X. and S.S.J.C.r. Mao, Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. 2007. 107(7): p. 2891-2959.
126. Yang, S., et al., Graphene‐based carbon nitride nanosheets as efficient metal‐free electrocatalysts for oxygen reduction reactions. 2011. 123(23): p. 5451-5455.
127. Li, Y., et al., Nitrogen-doped graphene quantum dots with oxygen-rich functional groups. 2012. 134(1): p. 15-18.
128. Yan, R., et al., Graphene quantum dots cut from graphene flakes: high electrocatalytic activity for oxygen reduction and low cytotoxicity. RSC Advances, 2014. 4(44): p. 23097-23106.
129. Liu, Y., P.J.A.a.m. Wu, and interfaces, Graphene quantum dot hybrids as efficient metal-free electrocatalyst for the oxygen reduction reaction. 2013. 5(8): p. 3362-3369.
130. Saidi, W.A.J.T.J.o.P.C.L., Oxygen reduction electrocatalysis using N-doped graphene quantum-dots. 2013. 4(23): p. 4160-4165.
131. Zhu, C., J. Zhai, and S.J.C.c. Dong, Bifunctional fluorescent carbon nanodots: green synthesis via soy milk and application as metal-free electrocatalysts for oxygen reduction. 2012. 48(75): p. 9367-9369.
132. Tripathi, S., S.K. Sonkar, and S.J.N. Sarkar, Growth stimulation of gram (Cicer arietinum) plant by water soluble carbon nanotubes. 2011. 3(3): p. 1176-1181.
133. Murthy, N., et al., A novel strategy for encapsulation and release of proteins: hydrogels and microgels with acid-labile acetal cross-linkers. 2002. 124(42): p. 12398-12399.