Abstract View

Author(s): Sonam Tamang1, Anu Surendran2, Kamal P. Sharma3, Jyoti Giri4, Sabu Thomas5, Takahiro Maruyama6, Sabita Shrestha7, Rameshwar Adhikari8

Email(s): 1shresthasabita@hotmail.com

Address:

    Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal

Published In:   Volume - 3,      Issue - 1,     Year - 2023

DOI: 10.55878/SES2023-3-1-2  

 View HTML        View PDF

Please allow Pop-Up for this website to view PDF file.

ABSTRACT:
The structural, thermal and surface-wetting properties of epoxy resin/multiwalled carbon nanotubes (EP/MWCNTs) composites were studied by preparing nanocomposites by the physical mixing assisted by ultrasonication. The materials were characterized by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), and thermogravimetric analysis (TGA). The contact angles of water droplets formed on the sample surfaces were measured to study their surface-wetting properties. FTIR showed the successful cross-linking of the EP matrix and good interaction between MWCNT and epoxy matrix in the nanocomposites. XRD attested that the incorporation of MWCNT in the EP did not influence the nature of the physical and chemical structures of the matrix polymer. Based on TGA results, the composites with chemically modified nanotubes were found to possess slightly higher thermostability than the analogous materials fabricated with the neat MWCNTs. Further, the EP/pristine MWCNT composites exhibited hydrophobic behavior while the EP/chemically modified MWCNT composites were comparatively hydrophilic which is attributed to the introduction of carboxyl groups during the chemical treatment of the nanotubes with strong acid.

Cite this article:
Sonam Tamanga,b, Anu Surendranc, Kamal P. Sharmad, Jyoti Girie, Sabu Thomasc, Takahiro Maruyamad, Sabita Shresthaa*, Rameshwar Adhikari a,b *(2023), Structural, thermal, and surface wetting properties of epoxy resin/multiwalled carbon nanotubes composites, 3 (1) 2023, 9-16, 10.55878/SES2023-3-1-2DOI: https://doi.org/10.55878/SES2023-3-1-2


[1]          Pandit R, Giri J, Michler GH, Lach R, Grellmann W, Youssef B, et al. Effect of Epoxidation of Diene Component of SBS Block Copolymer on Morphology and Mechanical Properties. Macromol Symp 2012;315:152–9. https://doi.org/10.1002/masy.201250519.

[2]          Pandit R, Youssef B, Saiter JM, Adhikari R. Investigations into Morphology and Mechanical Properties of Epoxidized Polystyrene/Polybutadiene/Polystyrene (SBS) Triblock Copolymer. J Nepal Chem Soc 2013;28:42–7. https://doi.org/10.3126/jncs.v28i0.8057.

[3]          Adhikari R, Michler GH, Huy TA, Ivan’kova E, Godehardt R, Lebek W, et al. Correlation between Molecular Architecture, Morphology, and Deformation Behaviour of Styrene/Butadiene Block Copolymers. Macromol Chem Phys 2003;204:488–99. https://doi.org/10.1002/macp.200390022.

[4]          Henning S, Adhikari R, Borreck S, Buschnakowski M, Michler GH. Micromechanical studies of styrenic block copolymer blends based nanocomposites. Macromol Symp 2013;327:85–93. https://doi.org/10.1002/masy.201350510.

[5]          Alkandary T, S. Mohammed S, M. Zakaria H, Abdallah S. Optical Characteristics of EPOXY/MWCNTS Nanocomposites. Eng Res J - Fac Eng 2020;45:13–5. https://doi.org/10.21608/erjsh.2021.229966.

[6]          Park JG, Cheng Q, Lu J, Bao J, Li S, Tian Y, et al. Thermal conductivity of MWCNT/epoxy composites: The effects of length, alignment and functionalization. Carbon N Y 2012;50:2083–90. https://doi.org/10.1016/j.carbon.2011.12.046.

[7]          Neitzert HC, Vertuccio L, Sorrentino A. Epoxy/MWCNT composite as temperature sensor and Electrical heating element. IEEE Trans Nanotechnol 2011;10:688–93. https://doi.org/10.1109/TNANO.2010.2068307.

[8]          John DA, Banerjee S, Bohannan GW, Biswas K. Solid-state fractional capacitor using MWCNT-epoxy nanocomposite. Appl Phys Lett 2017;110. https://doi.org/10.1063/1.4981204.

[9]          Dhakal KN, Krause B, Lach R, Wutzler A, Grellmann W, Le HH, et al. Electrically conductive nanocomposites based on poly(lactic acid)/flexible copolyester blends with multiwalled carbon nanotubes. J Appl Polym Sci 2022;139:1–12. https://doi.org/10.1002/app.51554.

[10]        Hema S, Sambhudevan S, Mahitha PM, Sneha K, Advaith PS, Sultan KR, et al. Effect of conducting fillers in natural rubber nanocomposites as effective EMI shielding materials. Mater Today Proc 2019;25:274–7. https://doi.org/10.1016/j.matpr.2020.01.392.

[11]        Zhao S, Abu-Omar MM. Synthesis of Renewable Thermoset Polymers through Successive Lignin Modification Using Lignin-Derived Phenols. ACS Sustain Chem Eng 2017;5:5059–66. https://doi.org/10.1021/acssuschemeng.7b00440.

[12]        Khatiwada SP, Sarath Chandran C, Lach R, Liebscher M, Marc Saiter J, Thomas S, et al. Morphology and Mechanical Properties of Star Block Copolymer Modified Epoxy Resin Blends. Mater Today Proc 2017;4:5734–42. https://doi.org/10.1016/j.matpr.2017.06.038.

[13]        Januszewski R, Dutkiewicz M, Nowicki M, Szołyga M, Kownacki I. Synthesis and Properties of Epoxy Resin Modified with Novel Reactive Liquid Rubber-Based Systems. Ind Eng Chem Res 2021;60:2178–86. https://doi.org/10.1021/acs.iecr.0c05781.

[14]        Zhang P, Kan L, Zhang X, Li R, Qiu C, Ma N, et al. Supramolecularly toughened and elastic epoxy resins by grafting 2-ureido-4[1H]-pyrimidone moieties on the side chain. Eur Polym J 2019;116:126–33. https://doi.org/10.1016/j.eurpolymj.2019.04.001.

[15]        Chen K, Zhao X, Zhang F, Wu X, Huang W, Liu W, et al. Influence of gamma irradiation on the molecular dynamics and mechanical properties of epoxy resin. Polym Degrad Stab 2019;168:108940. https://doi.org/10.1016/j.polymdegradstab.2019.108940.

[16]        Rad ER, Vahabi H, de Anda AR, Saeb MR, Thomas S. Bio-epoxy resins with inherent flame retardancy. Prog Org Coatings 2019;135:608–12. https://doi.org/10.1016/j.porgcoat.2019.05.046.

[17]        Turk M, Hamerton I, Ivanov DS. Ductility potential of brittle epoxies: Thermomechanical behaviour of plastically-deformed fully-cured composite resins. Polymer (Guildf) 2017;120:43–51. https://doi.org/10.1016/j.polymer.2017.05.052.

[18]        Wilkinson AN, Kinloch IA, Othman RN. Low viscosity processing using hybrid CNT-coated silica particles to form electrically conductive epoxy resin composites. Polymer (Guildf) 2016;98:32–8. https://doi.org/10.1016/j.polymer.2016.06.009.

[19]        Sangermano M, D’Anna A, Marro C, Klikovits N, Liska R. UV-activated frontal polymerization of glass fibre reinforced epoxy composites. Compos Part B Eng 2018;143:168–71. https://doi.org/10.1016/j.compositesb.2018.02.014.

[20]        Shioya M, Kuroyanagi Y, Ryu M, Morikawa J. Analysis of the adhesive properties of carbon nanotube- and graphene oxide nanoribbon-dispersed aliphatic epoxy resins based on the Maxwell model. Int J Adhes Adhes 2018;84:27–36. https://doi.org/10.1016/j.ijadhadh.2018.01.019.

[21]        Chen S, Chen L, Wang Y, Wang C, Miao M, Zhang D. Preparation of nanocomposites with epoxy resins and thiol-functionalized carbon nanotubes by thiol-ene click reaction. Polym Test 2019;77:105912. https://doi.org/10.1016/j.polymertesting.2019.105912.

[22]        Ajayan PM, Zhou OZ. Mechanical Applications of Carbon Nanotubes. Carbon Nanotube Their Appl 2020;425:519–21. https://doi.org/10.1201/b11989-34.

[23]        Eatemadi A, Daraee H, Karimkhanloo H, Kouhi M, Zarghami N, Akbarzadeh A, et al. Carbon nanotubes: Properties, synthesis, purification, and medical applications. Nanoscale Res Lett 2014;9:1–13. https://doi.org/10.1186/1556-276X-9-393.

[24]        Salah LS, Chouai M, Danlée Y, Huynen I, Ouslimani N. Simulation and optimization of electromagnetic absorption of polycarbonate/CNT composites using machine learning. Micromachines 2020;11:1–17. https://doi.org/10.3390/MI11080778.

[25]        Han M, Dong T, Hou D, Yao J, Han L. Carbon nanotube-based Janus composite membrane of oil fouling resistance for direct contact membrane distillation. J Memb Sci 2020;607:118078. https://doi.org/10.1016/j.memsci.2020.118078.

[26]        Spadafora EJ, Saint-Aubin K, Celle C, Demadrille R, Grévin B, Simonato JP. Work function tuning for flexible transparent electrodes based on functionalized metallic single walled carbon nanotubes. Carbon N Y 2012;50:3459–64. https://doi.org/10.1016/j.carbon.2012.03.010.

[27]        Li W, Liu J, Yan C. Multiwalled carbon nanotubes used as an electrode reaction catalyst for VO2+/VO2+ for a vanadium redox flow battery. Carbon N Y 2011;49:3463–70. https://doi.org/10.1016/j.carbon.2011.04.045.

[28]        Hills G, Lau C, Wright A, Fuller S, Bishop MD, Srimani T, et al. Modern microprocessor built from complementary carbon nanotube transistors. Nature 2019;572:595–602. https://doi.org/10.1038/s41586-019-1493-8.

[29]        Zhu J, Kim JD, Peng H, Margrave JL, Khabashesku VN, Barrera E V. Improving the dispersion and integration of single-walled carbon nanotubes in epoxy composites through functionalization. Nano Lett 2003;3:1107–13. https://doi.org/10.1021/nl0342489.

[30]        Lavorgna M, Romeo V, Martone A, Zarrelli M, Giordano M, Buonocore GG, et al. Silanization and silica enrichment of multiwalled carbon nanotubes: Synergistic effects on the thermal-mechanical properties of epoxy nanocomposites. Eur Polym J 2013;49:428–38. https://doi.org/10.1016/j.eurpolymj.2012.10.003.

[31]        Shen J, Huang W, Wu L, Hu Y, Ye M. The reinforcement role of different amino-functionalized multiwalled carbon nanotubes in epoxy nanocomposites. Compos Sci Technol 2007;67:3041–50. https://doi.org/10.1016/j.compscitech.2007.04.025.

[32]        Shen J, Huang W, Wu L, Hu Y, Ye M. Study on amino-functionalized multiwalled carbon nanotubes. Mater Sci Eng A 2007;464:151–6. https://doi.org/10.1016/j.msea.2007.02.091.

[33]        Mostovoy A, Yakovlev A, Tseluikin V, Lopukhova M. Epoxy nanocomposites reinforced with functionalized carbon nanotubes. Polymers (Basel) 2020;12:12–5. https://doi.org/10.3390/polym12081816.

[34]        Zhou C, Li Z, Li J, Yuan T, Chen B, Ma X, et al. Epoxy composite coating with excellent anticorrosion and self-healing performances based on multifunctional zeolitic imidazolate framework derived nanocontainers. Chem Eng J 2020;385:123835. https://doi.org/10.1016/j.cej.2019.123835.

[35]        Kocaman S, Gursoy M, Karaman M, Ahmetli G. Synthesis and plasma surface functionalization of carbon nanotubes for using in advanced epoxy-based nanocomposites. Surf Coatings Technol 2020;399:126144. https://doi.org/10.1016/j.surfcoat.2020.126144.

[36]        Pozdnyakov AS, Emel’yanov AI, Kuznetsova NP, Ermakova TG, Fadeeva T V., Sosedova LM, et al. Nontoxic hydrophilic polymeric nanocomposites containing silver nanoparticles with strong antimicrobial activity. Int J Nanomedicine 2016;11:1295–304. https://doi.org/10.2147/IJN.S98995.

[37]        Wang W, Zhu Y, Liao S, Li J. Carbon Nanotubes Reinforced Composites for Biomedical Applications. Biomed Res Int 2014;2014:1–14. https://doi.org/10.1155/2014/518609.

[38]        Hamid ZAA, Blencowe A, Ozcelik B, Palmer JA, Stevens GW, Abberton KM, et al. Epoxy-amine synthesized hydrogel scaffolds for soft-tissue engineering. Biomaterials 2010;31:6454–67. https://doi.org/10.1016/j.biomaterials.2010.05.008.

[39]        Shrestha S, Park CY. Deposition of titania nanoparticles on the surface of acid treated multiwalled carbon nanotubes. Adv Mater Res 2010;117:27–32. https://doi.org/10.4028/www.scientific.net/AMR.117.27.

[40]        Charles J, Ramkumaar GR, Azhagiri S, Gunasekaran S. FTIR and thermal studies on nylon-66 and 30% glass fibre reinforced nylon-66. E-Journal Chem 2009;6:23–33. https://doi.org/10.1155/2009/909017.

[41]        Zhan Y, Meng F, Yang X, Lei Y, Zhao R, Liu X. Synthesis, characterization and properties of multifunctional poly(arylene ether nitriles) (PEN)/CNTs/Fe3O4 nanocomposites. J Polym Sci Part B Polym Phys 2011;49:611–9. https://doi.org/10.1002/polb.22229.

[42]        Mahmood OA, Jameel ZN, Abdullah HW. Effect of Different Multiwalled Carbon Nanotubes MWCNTs on Mechanical and Physical Properties of Epoxy Nanocomposites. IOP Conf Ser Mater Sci Eng 2021;1094:012166. https://doi.org/10.1088/1757-899x/1094/1/012166.

[43]        Pǎun C, Obreja C, Comǎnescu F, Tucureanu V, Tutunaru O, Romanitan C, et al. Epoxy nanocomposites based on MWCNT. Proc Int Semicond Conf CAS 2019;2019-Octob:237–40. https://doi.org/10.1109/SMICND.2019.8923947.

[44]        Rahaman A, Ventura IA, Lubineau G. Influence of carbon nanotubes on the curing and damage behavior of epoxy/carbon nanotubes composites. 15th Eur. Conf. Compos. Mater., 2012.

[45]        Alhumade H, Rezk H, Nassef AM, Al-Dhaifallah M. Fuzzy Logic Based-Modeling and Parameter Optimization for Improving the Corrosion Protection of Stainless Steel 304 by Epoxy-Graphene Composite. IEEE Access 2019;7:100899–909. https://doi.org/10.1109/ACCESS.2019.2930902.

[46]        Khezri T, Sharif M, Pourabas B. Polythiophene-graphene oxide doped epoxy resin nanocomposites with enhanced electrical, mechanical and thermal properties. RSC Adv 2016;6:93680–93. https://doi.org/10.1039/c6ra16701b.

[47]        Gantayat S, Sarkar N, Prusty G, Rout D, Swain SK. Designing of Epoxy Matrix by Chemically Modified Multiwalled Carbon Nanotubes. Adv Polym Technol 2018;37:176–84. https://doi.org/10.1002/adv.21654.

[48]        Cheng Q, Wang J, Jiang K, Li Q, Fan S. Fabrication and properties of aligned multiwalled carbon nanotube-reinforced epoxy composites. J Mater Res 2008;23:2975–83. https://doi.org/10.1557/JMR.2008.0356.

[49]        Cao Y, Feng J, Wu P. Preparation of organically dispersible graphene nanosheet powders through a lyophilization method and their poly(lactic acid) composites. Carbon N Y 2010;48:3834–9. https://doi.org/10.1016/j.carbon.2010.06.048.

[50]        Kim SH. Fabrication of superhydrophobic surfaces. J Adhes Sci Technol 2008;22:235–50. https://doi.org/10.1163/156856108X305156.

[51]        Ardjmand M, Omidi M, Choolaei M. The effects of functionalized multiwalled carbon nanotube on mechanical properties of multiwalled carbon nanotube/epoxy composites. Orient J Chem 2015;31:2291–301. https://doi.org/10.13005/ojc/310457.

 

Related Images:



Recent Images



Comparing the antibacterial activity of plants against bacteria
Industrial algae mediated development and evaluation of Titanium Oxide nanoparticles, their ability to fight bacteria, and environmental application
Bacterial mediated synthesis and characterization of copper oxide nanoparticles and their antimicrobial and dye remediation applications
Fungal mediated synthesis and characterization of mixed iron- manganese oxide nanoparticles and their antimicrobial and dye remediation applications
Effect of alkyl chain length of alcohols on the physicochemical properties of their binary mixtures with diethylmethylammonium trifluoroacetate,
Catalysing sustainability by harnessing microbial activities and technologies to improve sustainability for wide-scale implementation and prevent disease,
Cutting-edge breakthroughs in the acetone-butanol-ethanol fermentation technology
Probabilistic Machine Learning and Artificial Intelligence
A Study on Genetic Inheritance of Mutations in Drosophila Melanogaster
Synthesis of potassium salts from derivatives of natural acids

Tags


Recomonded Articles: