[1] Pandit R, Giri J, Michler GH, Lach R,
Grellmann W, Youssef B, et al. Effect of Epoxidation of Diene Component of SBS
Block Copolymer on Morphology and Mechanical Properties. Macromol Symp
2012;315:152–9. https://doi.org/10.1002/masy.201250519.
[2] Pandit R, Youssef B, Saiter JM,
Adhikari R. Investigations into Morphology and Mechanical Properties of
Epoxidized Polystyrene/Polybutadiene/Polystyrene (SBS) Triblock Copolymer. J
Nepal Chem Soc 2013;28:42–7. https://doi.org/10.3126/jncs.v28i0.8057.
[3] Adhikari R, Michler GH, Huy TA,
Ivan’kova E, Godehardt R, Lebek W, et al. Correlation between Molecular
Architecture, Morphology, and Deformation Behaviour of Styrene/Butadiene Block
Copolymers. Macromol Chem Phys 2003;204:488–99.
https://doi.org/10.1002/macp.200390022.
[4] Henning S, Adhikari R, Borreck S, Buschnakowski
M, Michler GH. Micromechanical studies of styrenic block copolymer blends based
nanocomposites. Macromol Symp 2013;327:85–93.
https://doi.org/10.1002/masy.201350510.
[5] Alkandary T, S. Mohammed S, M. Zakaria
H, Abdallah S. Optical Characteristics of EPOXY/MWCNTS Nanocomposites. Eng Res
J - Fac Eng 2020;45:13–5. https://doi.org/10.21608/erjsh.2021.229966.
[6] Park JG, Cheng Q, Lu J, Bao J, Li S,
Tian Y, et al. Thermal conductivity of MWCNT/epoxy composites: The effects of
length, alignment and functionalization. Carbon N Y 2012;50:2083–90.
https://doi.org/10.1016/j.carbon.2011.12.046.
[7] Neitzert HC, Vertuccio L, Sorrentino
A. Epoxy/MWCNT composite as temperature sensor and Electrical heating element.
IEEE Trans Nanotechnol 2011;10:688–93. https://doi.org/10.1109/TNANO.2010.2068307.
[8] John DA, Banerjee S, Bohannan GW,
Biswas K. Solid-state fractional capacitor using MWCNT-epoxy nanocomposite.
Appl Phys Lett 2017;110. https://doi.org/10.1063/1.4981204.
[9] Dhakal KN, Krause B, Lach R, Wutzler A,
Grellmann W, Le HH, et al. Electrically conductive nanocomposites based on
poly(lactic acid)/flexible copolyester blends with multiwalled carbon
nanotubes. J Appl Polym Sci 2022;139:1–12. https://doi.org/10.1002/app.51554.
[10] Hema S, Sambhudevan S, Mahitha PM, Sneha
K, Advaith PS, Sultan KR, et al. Effect of conducting fillers in natural rubber
nanocomposites as effective EMI shielding materials. Mater Today Proc
2019;25:274–7. https://doi.org/10.1016/j.matpr.2020.01.392.
[11] Zhao S, Abu-Omar MM. Synthesis of
Renewable Thermoset Polymers through Successive Lignin Modification Using
Lignin-Derived Phenols. ACS Sustain Chem Eng 2017;5:5059–66.
https://doi.org/10.1021/acssuschemeng.7b00440.
[12] Khatiwada SP, Sarath Chandran C, Lach R,
Liebscher M, Marc Saiter J, Thomas S, et al. Morphology and Mechanical
Properties of Star Block Copolymer Modified Epoxy Resin Blends. Mater Today
Proc 2017;4:5734–42. https://doi.org/10.1016/j.matpr.2017.06.038.
[13] Januszewski R, Dutkiewicz M, Nowicki M,
Szołyga M, Kownacki I. Synthesis and Properties of Epoxy Resin Modified with
Novel Reactive Liquid Rubber-Based Systems. Ind Eng Chem Res 2021;60:2178–86.
https://doi.org/10.1021/acs.iecr.0c05781.
[14] Zhang P, Kan L, Zhang X, Li R, Qiu C, Ma
N, et al. Supramolecularly toughened and elastic epoxy resins by grafting
2-ureido-4[1H]-pyrimidone moieties on the side chain. Eur Polym J
2019;116:126–33. https://doi.org/10.1016/j.eurpolymj.2019.04.001.
[15] Chen K, Zhao X, Zhang F, Wu X, Huang W,
Liu W, et al. Influence of gamma irradiation on the molecular dynamics and
mechanical properties of epoxy resin. Polym Degrad Stab 2019;168:108940.
https://doi.org/10.1016/j.polymdegradstab.2019.108940.
[16] Rad ER, Vahabi H, de Anda AR, Saeb MR,
Thomas S. Bio-epoxy resins with inherent flame retardancy. Prog Org Coatings
2019;135:608–12. https://doi.org/10.1016/j.porgcoat.2019.05.046.
[17] Turk M, Hamerton I, Ivanov DS. Ductility
potential of brittle epoxies: Thermomechanical behaviour of
plastically-deformed fully-cured composite resins. Polymer (Guildf)
2017;120:43–51. https://doi.org/10.1016/j.polymer.2017.05.052.
[18] Wilkinson AN, Kinloch IA, Othman RN. Low
viscosity processing using hybrid CNT-coated silica particles to form
electrically conductive epoxy resin composites. Polymer (Guildf) 2016;98:32–8.
https://doi.org/10.1016/j.polymer.2016.06.009.
[19] Sangermano M, D’Anna A, Marro C,
Klikovits N, Liska R. UV-activated frontal polymerization of glass fibre
reinforced epoxy composites. Compos Part B Eng 2018;143:168–71. https://doi.org/10.1016/j.compositesb.2018.02.014.
[20] Shioya M, Kuroyanagi Y, Ryu M, Morikawa
J. Analysis of the adhesive properties of carbon nanotube- and graphene oxide
nanoribbon-dispersed aliphatic epoxy resins based on the Maxwell model. Int J
Adhes Adhes 2018;84:27–36. https://doi.org/10.1016/j.ijadhadh.2018.01.019.
[21] Chen S, Chen L, Wang Y, Wang C, Miao M,
Zhang D. Preparation of nanocomposites with epoxy resins and
thiol-functionalized carbon nanotubes by thiol-ene click reaction. Polym Test
2019;77:105912. https://doi.org/10.1016/j.polymertesting.2019.105912.
[22] Ajayan PM, Zhou OZ. Mechanical
Applications of Carbon Nanotubes. Carbon Nanotube Their Appl 2020;425:519–21.
https://doi.org/10.1201/b11989-34.
[23] Eatemadi A, Daraee H, Karimkhanloo H,
Kouhi M, Zarghami N, Akbarzadeh A, et al. Carbon nanotubes: Properties,
synthesis, purification, and medical applications. Nanoscale Res Lett
2014;9:1–13. https://doi.org/10.1186/1556-276X-9-393.
[24] Salah LS, Chouai M, Danlée Y, Huynen I,
Ouslimani N. Simulation and optimization of electromagnetic absorption of
polycarbonate/CNT composites using machine learning. Micromachines
2020;11:1–17. https://doi.org/10.3390/MI11080778.
[25] Han M, Dong T, Hou D, Yao J, Han L.
Carbon nanotube-based Janus composite membrane of oil fouling resistance for
direct contact membrane distillation. J Memb Sci 2020;607:118078.
https://doi.org/10.1016/j.memsci.2020.118078.
[26] Spadafora EJ, Saint-Aubin K, Celle C,
Demadrille R, Grévin B, Simonato JP. Work function tuning for flexible
transparent electrodes based on functionalized metallic single walled carbon
nanotubes. Carbon N Y 2012;50:3459–64.
https://doi.org/10.1016/j.carbon.2012.03.010.
[27] Li W, Liu J, Yan C. Multiwalled carbon
nanotubes used as an electrode reaction catalyst for VO2+/VO2+ for a vanadium
redox flow battery. Carbon N Y 2011;49:3463–70.
https://doi.org/10.1016/j.carbon.2011.04.045.
[28] Hills G, Lau C, Wright A, Fuller S,
Bishop MD, Srimani T, et al. Modern microprocessor built from complementary
carbon nanotube transistors. Nature 2019;572:595–602.
https://doi.org/10.1038/s41586-019-1493-8.
[29] Zhu J, Kim JD, Peng H, Margrave JL,
Khabashesku VN, Barrera E V. Improving the dispersion and integration of
single-walled carbon nanotubes in epoxy composites through functionalization.
Nano Lett 2003;3:1107–13. https://doi.org/10.1021/nl0342489.
[30] Lavorgna M, Romeo V, Martone A, Zarrelli
M, Giordano M, Buonocore GG, et al. Silanization and silica enrichment of
multiwalled carbon nanotubes: Synergistic effects on the thermal-mechanical
properties of epoxy nanocomposites. Eur Polym J 2013;49:428–38.
https://doi.org/10.1016/j.eurpolymj.2012.10.003.
[31] Shen J, Huang W, Wu L, Hu Y, Ye M. The
reinforcement role of different amino-functionalized multiwalled carbon
nanotubes in epoxy nanocomposites. Compos Sci Technol 2007;67:3041–50.
https://doi.org/10.1016/j.compscitech.2007.04.025.
[32] Shen J, Huang W, Wu L, Hu Y, Ye M. Study
on amino-functionalized multiwalled carbon nanotubes. Mater Sci Eng A
2007;464:151–6. https://doi.org/10.1016/j.msea.2007.02.091.
[33] Mostovoy A, Yakovlev A, Tseluikin V,
Lopukhova M. Epoxy nanocomposites reinforced with functionalized carbon
nanotubes. Polymers (Basel) 2020;12:12–5.
https://doi.org/10.3390/polym12081816.
[34] Zhou C, Li Z, Li J, Yuan T, Chen B, Ma
X, et al. Epoxy composite coating with excellent anticorrosion and self-healing
performances based on multifunctional zeolitic imidazolate framework derived
nanocontainers. Chem Eng J 2020;385:123835.
https://doi.org/10.1016/j.cej.2019.123835.
[35] Kocaman S, Gursoy M, Karaman M, Ahmetli
G. Synthesis and plasma surface functionalization of carbon nanotubes for using
in advanced epoxy-based nanocomposites. Surf Coatings Technol 2020;399:126144.
https://doi.org/10.1016/j.surfcoat.2020.126144.
[36] Pozdnyakov AS, Emel’yanov AI, Kuznetsova
NP, Ermakova TG, Fadeeva T V., Sosedova LM, et al. Nontoxic hydrophilic
polymeric nanocomposites containing silver nanoparticles with strong
antimicrobial activity. Int J Nanomedicine 2016;11:1295–304. https://doi.org/10.2147/IJN.S98995.
[37] Wang W, Zhu Y, Liao S, Li J. Carbon
Nanotubes Reinforced Composites for Biomedical Applications. Biomed Res Int
2014;2014:1–14. https://doi.org/10.1155/2014/518609.
[38] Hamid ZAA, Blencowe A, Ozcelik B, Palmer
JA, Stevens GW, Abberton KM, et al. Epoxy-amine synthesized hydrogel scaffolds
for soft-tissue engineering. Biomaterials 2010;31:6454–67.
https://doi.org/10.1016/j.biomaterials.2010.05.008.
[39] Shrestha S, Park CY. Deposition of
titania nanoparticles on the surface of acid treated multiwalled carbon
nanotubes. Adv Mater Res 2010;117:27–32.
https://doi.org/10.4028/www.scientific.net/AMR.117.27.
[40] Charles J, Ramkumaar GR, Azhagiri S,
Gunasekaran S. FTIR and thermal studies on nylon-66 and 30% glass fibre
reinforced nylon-66. E-Journal Chem 2009;6:23–33.
https://doi.org/10.1155/2009/909017.
[41] Zhan Y, Meng F, Yang X, Lei Y, Zhao R,
Liu X. Synthesis, characterization and properties of multifunctional
poly(arylene ether nitriles) (PEN)/CNTs/Fe3O4 nanocomposites. J Polym Sci Part
B Polym Phys 2011;49:611–9. https://doi.org/10.1002/polb.22229.
[42] Mahmood OA, Jameel ZN, Abdullah HW.
Effect of Different Multiwalled Carbon Nanotubes MWCNTs on Mechanical and
Physical Properties of Epoxy Nanocomposites. IOP Conf Ser Mater Sci Eng
2021;1094:012166. https://doi.org/10.1088/1757-899x/1094/1/012166.
[43] Pǎun C, Obreja C, Comǎnescu F, Tucureanu
V, Tutunaru O, Romanitan C, et al. Epoxy nanocomposites based on MWCNT. Proc
Int Semicond Conf CAS 2019;2019-Octob:237–40. https://doi.org/10.1109/SMICND.2019.8923947.
[44] Rahaman A, Ventura IA, Lubineau G.
Influence of carbon nanotubes on the curing and damage behavior of epoxy/carbon
nanotubes composites. 15th Eur. Conf. Compos. Mater., 2012.
[45] Alhumade H, Rezk H, Nassef AM, Al-Dhaifallah
M. Fuzzy Logic Based-Modeling and Parameter Optimization for Improving the
Corrosion Protection of Stainless Steel 304 by Epoxy-Graphene Composite. IEEE
Access 2019;7:100899–909. https://doi.org/10.1109/ACCESS.2019.2930902.
[46] Khezri T, Sharif M, Pourabas B.
Polythiophene-graphene oxide doped epoxy resin nanocomposites with enhanced
electrical, mechanical and thermal properties. RSC Adv 2016;6:93680–93.
https://doi.org/10.1039/c6ra16701b.
[47] Gantayat S, Sarkar N, Prusty G, Rout D,
Swain SK. Designing of Epoxy Matrix by Chemically Modified Multiwalled Carbon
Nanotubes. Adv Polym Technol 2018;37:176–84. https://doi.org/10.1002/adv.21654.
[48] Cheng Q, Wang J, Jiang K, Li Q, Fan S.
Fabrication and properties of aligned multiwalled carbon nanotube-reinforced
epoxy composites. J Mater Res 2008;23:2975–83.
https://doi.org/10.1557/JMR.2008.0356.
[49] Cao Y, Feng J, Wu P. Preparation of
organically dispersible graphene nanosheet powders through a lyophilization
method and their poly(lactic acid) composites. Carbon N Y 2010;48:3834–9.
https://doi.org/10.1016/j.carbon.2010.06.048.
[50] Kim SH. Fabrication of superhydrophobic
surfaces. J Adhes Sci Technol 2008;22:235–50.
https://doi.org/10.1163/156856108X305156.
[51] Ardjmand M, Omidi M, Choolaei M. The
effects of functionalized multiwalled carbon nanotube on mechanical properties
of multiwalled carbon nanotube/epoxy composites. Orient J Chem
2015;31:2291–301. https://doi.org/10.13005/ojc/310457.