Abstract View

Author(s): Ratnakar Dutt Shukla1, Byanju Rai2

Email(s): 1rdbhuchem09@gmail.com, 2byanju.rai@gmail.com


    Department of Chemistry, Pt. DDU Govt. Model College, Bahua, Fatehpur, India

Published In:   Volume - 1,      Issue - 1,     Year - 2021

DOI: Not Available

 View HTML        View PDF

Please allow Pop-Up for this website to view PDF file.

Twenty-first century witnessed the importance of C-H bond functionalization which is regarded as a potent, promising and direct tool for the construction of the carbon-carbon bond. The concept of C-H bond functionalization has been highly explored in the field of synthetic organic chemistry. The current scenario of research is shifted towards the development of novel sustainable protocols which should have great environmental impact. It does not need pre‐functionalization of the substrates and thus offers an atom‐economic strategy hence regarded as green and sustainable approach. The applications of C-H functionalization approach, as a potential synthetic tool, have been well exemplified in the formation of C-C bond and carbon-heteroatom bonds (C-O, C-N, C-S and C-X) which have notable applications in the preparation of complex natural products and medicinally potent compounds. The present review covers the employment of numerous novel and innovative sustainable approaches in the field of C(sp3)-H Functionalization reactions.

Cite this article:
Ratnakar Dutt Shukla, Byanju Rai (2021). Employment of Green and Sustainable Protocols for C(sp3)-H bond Functionalization of 2-Methyl azaarenes and subsequent C-C bond formation. Spectrum of Emerging Sciences, 1(1), pp.21-28.


[1]    R. H. Crabtree and A. Lei, Chem. Rev., 2017, 117, 8481-8482.

[2]    H. M. L. Davies and D. Morton, ACS Cent. Sci., 2017, 3, 936-943.

[3]    R. Niu, J. Xiao, T. Liang and X. Li, Org. Lett., 2012, 14, 3, 676-679.

[4]    D. J. Abrams, P. A. Provencher and E. J. Sorensen, Chem. Soc. Rev., 2018, 47, 8925-8967.

[5]    S. K. Sinha, G. Zanoni, and D. Maiti, Asian J. Org.Chem., 2018, 7, 1178-1192.

[6]    P. B. Brady and V. Bhat, Eur. J. Org. Chem., 2017, 5179-5190.

[7]    C. Liu, R. Chen, Y. Shen, Z. Liang, Y. Hua and Y. Zhang, Angew. Chem. Int. Ed., 2017, 56, 8187-8190.

[8]    M. C. Nevase, R. D. Pawar, P. S. Munjal, A. E. Dongare and R.S. Satkar, European Journ. of Pharmaceutical and Medical Research, 2018, 5, 184-192.

[9]    Y. Hamada, DOI: 10.5772/intechopen.74719.

[10] J. P. Michael, Nat. Prod. Rep., 1997, 14, 605.

[11] J. Wiesner, R. Ortmann, H. Jomaa and M. Schlitzer, Angew. Chem. Int. Ed., 2003, 43, 5274.

[12] A. Fournet, R. Hocquemiller, F. Roblot, A. Cave, P. Richomme and J. Bruneton, J. Nat. Prod., 1993, 56, 1547

[13] Y.B.R.D. Rajesh, DOI: 10.5772/intechopen.81239.

[14] A. Kumar, K. Srivastava, R. Kumar, S. K. Puri and P. M. S. Chauhan, Bioorg. Med. Chem. Lett., 2010, 20, 7059.

[15] B. Qian, S. Guo, J. Shao, Q. Zhu, L. Yang, C. Xia and H. Huang, J. Am. Chem. Soc., 2010, 132, 3650-3651.

[16] T.-Y. Feng, H.-X. Li, D. J. Young and J.-P. Lang, J. Org. Chem., 2017, 82, 4113-4120.

[17] A. Muthukumar and G. Sekar, Org. Biomol. Chem., 2017, 15, 691-700.

[18] S. A. R. Mulla, M. Y. Pathan and S. S. Chavan, RSC Adv., 2013, 3, 20281-20286.

[19] H. Komai, T. Yoshino, S. Matsunaga and M. Kanai, Org. Lett., 2011, 13, 1706-1709

[20] J. Wolfling, E. Frank, G. Schnieder, L. F. Tietze, Eur. J. Org. Chem. 2004, 90.

[21] Y. Nakao, K. S. Kanyiva; T. Hiyama, J. Am. Chem. Soc. 2008, 130, 2448.

[22] M. Rueping, N. Tolstoluzhsky, Org. Lett. 2011, 13, 1095

[23] K. Kumari, B. K. Allam and K. N.Singh, RSC Adv., 2014, 4, 19789-19793

[24] D. K. J. Yeung, T. Gao, J. Huang, S. Sun, H. Guo and J. Wang, Green Chem., 2013, 15, 2384-2388.

[25]  A. Kumar and R. D. Shukla, Green Chem., 2015, 17, 848-851

[26] R. Breslow and S. D. Dong, Chem. Rev., 1998, 98, 1997-2011.

[27] H. Dodziuk, Cyclodextrins and Their Complexes, Wiley-VCH, Weinheim, Germany, 2006.

[28] A. Modak, J. Mondal, M. Sasidharan and A. Bhaumik, Green Chem., 2011, 13, 1317-1331.

[29] M. B. Gawande and P. S. Branco, Green Chem., 2011, 13, 3355-3359.

[30]  K. Sato, M. Aoki and R. Noyori, Science, 1998, 281, 1646-1647.

Related Images:

Recent Images

Comparing the antibacterial activity of plants against bacteria
Industrial algae mediated development and evaluation of Titanium Oxide nanoparticles, their ability to fight bacteria, and environmental application
Bacterial mediated synthesis and characterization of copper oxide nanoparticles and their antimicrobial and dye remediation applications
Fungal mediated synthesis and characterization of mixed iron- manganese oxide nanoparticles and their antimicrobial and dye remediation applications
Effect of alkyl chain length of alcohols on the physicochemical properties of their binary mixtures with diethylmethylammonium trifluoroacetate,
Catalysing sustainability by harnessing microbial activities and technologies to improve sustainability for wide-scale implementation and prevent disease,
Cutting-edge breakthroughs in the acetone-butanol-ethanol fermentation technology
Probabilistic Machine Learning and Artificial Intelligence
A Study on Genetic Inheritance of Mutations in Drosophila Melanogaster
Synthesis of potassium salts from derivatives of natural acids


Recomonded Articles:

Author(s): Bhupendra Kande, Prachi Parmar

DOI: 10.55878/SES2022-2-1-3         Access: Open Access Read More

Author(s): B. D. Patel

DOI:         Access: Open Access Read More

Author(s): Shathya Pranav Sujithra Rajesh Kannan

DOI: 10.55878/SES2022-2-2-1         Access: Open Access Read More