References
1. Ajulo
S, Awosile B. Global antimicrobial resistance and use surveillance system
(GLASS 2022): Investigating the relationship between antimicrobial resistance
and antimicrobial consumption data across the participating countries. PLoS
One. 2024 Feb 5;19(2):e0297921.
2. Ababay
Ketema Worku, Delele Worku Ayele. Recent advances of graphene-based materials
for emerging technologies. Results in Chemistry. 2023 Jan 1 [cited 2025 Sept
23];5:100971 .https://www.sciencedirect.com/science/article/pii/S2211715623002102
3. Guggenbichler
JP. Zinc molybdate having a triclinic crystal structure, as an antimicrobial
agent. US20220007649A1, 2022 https://patents.google.com/patent/US20220007649A1/en
4. Oudghiri-Hassani
H, Rakass S, Abboudi M, Mohmoud A, Al Wadaani F. Preparation and
Characterization of α-Zinc Molybdate Catalyst: Efficient Sorbent for Methylene
Blue and Reduction of 3-Nitrophenol. Molecules. 2018 June;23(6):1462.
5. Xu
Z, Shaozhen L, Yunjun M, Luocheng C, Hongxuan G, Bin L. The antibacterial
properties of nano ZnMoO4 powder. J Mater Sci. 2022 Sept 1;57(35):16820–9.
6. Raya
I, Mansoor Al Sarraf AA, Widjaja G, Ghazi Al-Shawi S, F. Ramadan M, Mahmood ZH,
et al. ZnMoO4 Nanoparticles: Novel and Facile Synthesis, Characterization, and
Photocatalytic Performance. Journal of Nanostructures. 2022 Apr 1;12(2):446–54.
7. Salem
SS, Fouda A. Green Synthesis of Metallic Nanoparticles and Their Prospective
Biotechnological Applications: an Overview. Biol Trace Elem Res. 2021 Jan;199(1):344–70.
8. Ozdal
M, Gurkok S. Recent advances in nanoparticles as antibacterial agent. ADMET
DMPK. 2022 Feb 2;10(2):115–29.
9. Mahmoud
EM, T.a. R, Soliman AAF, Said IG, Naga SM. Production of an eco-friendly,
effective antimicrobial and antifungal from cerium/natural bio-hydroxyapatite
coating for titanium plates suitable for bone augmentation. Ceramics
International. 2024 Feb 15;50(4):6979–94
10. Chen
J, Chen M, Ma H, Zhou W, Xu X. Advances and perspectives on separators of
aqueous zinc ion batteries. Energy Reviews. 2022 Sept 1;1(1):100005.
11. Shameem
AS, Priya MU, Siva V, Murugan A, Padmavathi K, Al-Sehemi AG. Unveiling the role
of rare earth dopant in metal molybdate nanocomposites via facile
microwave-combustion strategy and their effect on antibacterial activity.
Zeitschrift für Physikalische Chemie. 2024 Nov 1;238(11):1989–2002.
12. Kabir
MH, Hossain MZ, Jalil MA, Hossain MM, Ali MA, Khandaker MU, et al. Enhancement
of photocatalytic performance of V2O5 by rare-earth ions doping, synthesized by
facile hydrothermal technique. arXiv; 2023 [cited 2025 Sept 23] .http://arxiv.org/abs/2301.06666
13. Sharma
S, Kumar A, Thakur OP, Saharan P. Rare Earth Substitution in Perovskite BiFeO3
Multiferroic: Comparative Study of Structural, Magnetic, and Optical
Properties. J Electron Mater. 2024 Oct 1;53(10):6110–23.
14. Hussain
A, Ali S, Rizwan M, Zia Ur Rehman M, Javed MR, Imran M, et al. Zinc oxide
nanoparticles alter the wheat physiological response and reduce the cadmium
uptake by plants. Environ Pollut. 2018 Nov;242(Pt B):1518–26.
15. Konanç
MU, Değermenci GD, Kariper İA, Yavuz E. After-effects of a closed copper mine:
detailed analysis of environmental impacts in soil and plant samples. Environ
Earth Sci. 2024 June 27 [cited 2025 Sept 23];83(13):412.
https://doi.org/10.1007/s12665-024-11725-9
16. Zheng
B, Fan J, Chen B, Qin X, Wang J, Wang F, et al. Rare-Earth Doping in
Nanostructured Inorganic Materials. Chem Rev. 2022 Mar 23;122(6):5519–603.
17. Kargozar
S, Baino F, Hamzehlou S, Hill RG, Mozafari M. Bioactive glasses entering the
mainstream. Drug Discovery Today. 2018 Oct 1;23(10):1700–4.
18. Liang,
J. H., & Han, X. (2013). Structure-activity relationships and mechanism of
action of macrolides derived from erythromycin as antibacterial agents. Current
topics in medicinal chemistry, 13(24), 3131–3164.
https://doi.org/10.2174/15680266113136660223