Abstract View

Author(s): Devshree Verma, Meena Sahu, K.K. Harris

Email(s): harris@dbgirls.org

Address:

    Gurukul Mahila Mahavidyalaya, Kalabari Raipur (C.G) Govt. Higher Secondary School, Fundhar, Raipur (C.G) Department of Zoology Govt. D.B. Girls P.G. College, Raipur (C.G)

Published In:   Volume - 5,      Issue - 3,     Year - 2025

DOI: Not Available

 View HTML        View PDF

Please allow Pop-Up for this website to view PDF file.

ABSTRACT:
Phytochemicals in plant extracts possess therapeutic properties and are widely practiced by traditional healers. In this study, we evaluated the antisickling activities of Azadirachta indica and Helianthus annuus L. using both qualitative and quantitative phytochemical analyses. When compared with the findings from earlier studies on plants with antisickling potentials, it is suggested that the phytochemical profiles of these species may account for their antisickling activities. The aim of the present work was to investigate the phytochemical composition of leaf, seed, and stem extracts of Azadirachta indica and Helianthus annuus L. Extracts were prepared using ethanol, methanol, chloroform, and petroleum ether in a Soxhlet apparatus. Phytochemicals were identified following standard phytochemical protocols. The analysis revealed that saponins, reducing sugars, tannins, alkaloids, flavonoids and anthraquinones were present in both plants, while terpenoids and cardiac glycosides were absent in some parts of each plant. Quantitative evaluation using Folin–Ciocalteu’s reagent confirmed the presence of total phenolic compounds in leaf, seed, and stem extracts. The bioactive compounds—such as phenols, alkaloids, flavonoids, saponins, and tannins—are likely responsible for the medicinal value of Azadirachta indica and Helianthus annuus, thereby supporting their widespread uses in traditional medicine. Furthermore, their presence has been directly linked to the antisickling properties reported by several authorities.

Cite this article:
Devshree Verma, Meena Sahu, K.K. Harris (2025), Phytochemical characterisation of two plants with antisickling properties: Azadirachta indica A Juss and Helianthus annuus L.. Spectrum of Emerging Sciences, 5 (3) 7-12, 10.55878/SES2025-5-3-2


References

1.      Harborne JB. Phytochemical Methods. London: Chapman and Hall Ltd; 1973. p. 49–188.

2.      Trease GE, Evans WC. Pharmacognosy. 13th ed. London: Bailliere Tindall; 1989. p. 882.

3.      Sofowora A. Medicinal Plants and Traditional Medicine in Africa. Ibadan: Spectrum Books; 1993. p. 10–15.

4.      Harborne JB. Phytochemical Methods: A Guide to Modern Techniques of Plant Analysis. 3rd ed. New York: Chapman and Hall; 1998. p. 49–188.

5.      Obadoni BO, Ochuko PO. Phytochemical studies and comparative efficacy of the crude extracts of some haemostatic plants in Edo and Delta States of Nigeria. Glob J Pure Appl Sci. 2001;8(2):203–208.

6.      Boham BA, Kociper AR. Flavonoids and condensed tannins from leaves of Hawaiian Vaccinium reticulatum and V. calycinum. Pac Sci. 1994;48:458–463.

7.      Savitree M, Isara P, Nittaya SL, Worapan S. Radical scavenging activity and total phenolic content of medicinal plants used in primary health care. J Pharm Sci. 2004;9(1):32–35.

8.      Pourmorad F, Hosseinimehr SJ, Shahabimajid N. Antioxidant activity, phenol and flavonoid contents of some Iranian medicinal plants. Afr J Biotechnol. 2006;5(11):1142–1145.

9.      Lim YY, Lim TT, Jing J. Antioxidant properties of guava fruit: Comparison with some local fruits. Sunway Acad J. 2006;3:9–20.

10.  Sastri BN. The Wealth of India. New Delhi: CSIR; 1962. p. 336.

11.  Schanderl SH. Method in Food Analysis. New York: Academic Press; 1970. p. 709.

12.  Barani M, Sangiovanni E, Angarano M, Rajizadeh MA, Mehrabani M, Piazza S, et al. Phytosomes as innovative delivery systems for phytochemicals: A comprehensive review. Int J Nanomedicine. 2021;16:6983–7022.

13.  Sitorus P, Keliat JM, Asfianti V, Muhammad M, Satria D. A literature review of Artocarpus lacucha focusing on the phytochemical constituents and pharmacological properties of the plant. Molecules. 2022;27(20):6940.

14.  Kumar A, PN, Kumar M, Jose A, Tomer V, Oz E, et al. Major phytochemicals: Recent advances in health benefits and extraction method. Molecules. 2023;28(2):887.

15.  Camilleri E, Blundell R. A comprehensive review of the phytochemicals, health benefits, pharmacological safety and medicinal prospects of Moringa oleifera. Heliyon. 2024;10(6):e27807.

16.  Petrovska BB. Historical review of medicinal plants’ usage. Pharmacogn Rev. 2012;6(11):1–5. doi:10.4103/0973-7847.95849.

17.  Misganaw GA. Phytochemical analysis of some selected traditional medicinal plants in Ethiopia. Bull Natl Res Cent. 2022;46(1):87. doi:10.1186/s42269-022-00770-8.

18.  Saseed S, Mahmood S, Hassan S, et al. Antifungal activity of leaf extract of Neem (Azadirachta indica Linn). Int J Curr Microbiol App Sci. 2014;3(5):305–308.

19.  Medicinal plants, phytochemicals, and their impacts on gastrointestinal tract maturation. Front Physiol. 2021;12:684464. doi:10.3389/fphys.2021.684464.

20.  The antimicrobial potential of the Neem tree (Azadirachta indica). Front Pharmacol. 2022;13:891535. doi:10.3389/fphar.2022.891535.

21.  Fasher Bory W, Hammad M, Idris A. Evaluation of in vitro antimicrobial effects of Azadirachta indica (Neem) leaves extracts against selected pathogens. Microbes Infect Dis. 2022;3(3):744–750. doi:10.21608/mid.2021.109886.1213.

22.  Tapsell LC, Hemphill I, Cobiac L. Health benefits of herbs and spices: the past, the present, the future. Med J Aust. 2006;185(4 Suppl):S4–S24.

23.  MDPI. Medicinal plants. Plants. 2021;10(7):1355. doi:10.3390/plants10071355.

24.  Suttiarporn P, Choommongkol V. Microwave-assisted improved extraction and purification of nimbolide from Azadirachta indica leaves. Molecules. 2020;25(12):2913. doi:10.3390/molecules25122913.

25.  Rajendran P, Kumar P. Nimbolide: Promising agent for prevention and treatment of cancer. Food Nutr Res. 2024;68:9650. doi:10.29219/fnr.v68.9650.

26.  Nagini S. Neem limonoids as anticancer agents: Modulation of multiple signalling pathways. In: Studies on Tumor-Promoting Plants. 2014. doi:10.1016/B978-0-12-802215-3.00007-0.

27.  Elumalai P, et al. Molecular targets of nimbolide for anti-cancer therapy. PubMed. 2022. [No DOI available].

28.  Subramani R, et al. Nimbolide inhibits pancreatic cancer growth and metastasis. Sci Rep. 2016;6:19819. doi:10.1038/srep19819.

29.  Guo S, Ge Y, Na Jom K. A review of phytochemistry, metabolite changes, and medicinal uses of the common sunflower seed and sprouts (Helianthus annuus L.). Chem Cent J. 2017;11:95. doi:10.1186/s13065-017-0328-7.

30.  Al-Snafi AE. The pharmacological effects of Helianthus annuus—a review. Int J Adv Pharm Sci. 2018;5(3):1745–1756.

31.  Sarwar G, Hasan MM, Islam MJ, Rahman MM, Pathan MM, Hossain MR, et al. Evaluation of phytochemical contents and their antioxidant properties of sunflower (Helianthus annuus L.) seeds collected from Noakhali, Bangladesh. J Curr Adv Med Res. 2024;11(1):8–16.

32.  Shaheen S, Khalid S, Aaliya K, Gul A, Hafeez A, Armaghan M, et al. Insights into nimbolide molecular crosstalk and its anticancer properties. Med Oncol. 2024;41(6):158.

33.  Tapera RF, Siwe-Noundou X, Shai LJ, Mokhele S. Exploring the therapeutic potential, ethnomedicinal values, and phytochemistry of Helianthus tuberosus L.: A review. Pharmaceuticals. 2024;17(12):1672.

Related Images:



Recent Images



The Physico-Chemical Study of Pond Water of Raipur City with Reference to Total Dissolved Solids
Effects Of Microplastics On Fish Physiology
Comprehensive Review On Yttrium Zirconium Phosphor: Synthesis, Luminescence Properties And Applications
Analyzing Match Dynamics in ICC ODIs Using Queuing Theory
Preparation and Sensory Evaluation of Jelly, Using Hibiscus Sabdariffa (Ambadi Bhaji)
Kinetic Study of Oxidation of DL-Methionine in Alkaline Medium
Knowledge and Aptitude about Health Benefits of Foxtail Millet based products Among Women of Raipur.
Phytochemical characterisation of two plants with antisickling properties: Azadirachta indica A Juss and Helianthus annuus L.
Effectiveness of QR Codes for Nutritional Information in Food Products
Fresh and Marine Water Fish Diseases and Control: A Review

Tags


Recomonded Articles:

Author(s): Samrat Paudel; Rekina Shrestha; Pramod Poudel; Rameshwar Adhikari

DOI: 10.55878/SES2022-2-1-1         Access: Open Access Read More

Author(s): Parag Jain; Puneet Pal Singh

DOI: 10.55878/SES2021-1-1-1         Access: Open Access Read More

Author(s): Manish Kumar; Keshav Shishodiya; Yogendra Singh Rajawat; Seema Nayak

DOI: 10.55878/SES2023-3-1-6         Access: Open Access Read More

Author(s): Binod Shrestha; Sambridhi Shah; Khagendra Chapain; Rajendra Joshi; Rajesh Pandit

DOI: 10.55878/SES2022-2-1-7         Access: Open Access Read More

Author(s): Madhav Kapoor

DOI: 10.55878/SES2023-3-2-5         Access: Open Access Read More

Author(s): Sangita Gawde; Pragya Kulkarni

DOI: 10.55878/SES2024-4-2-8         Access: Open Access Read More

Author(s): Sushant Bindra; Mehak Piplani

DOI: 10.55878/SES2021-1-1-2         Access: Open Access Read More

Author(s): Bhupendra Kande; Prachi Parmar

DOI: 10.55878/SES2022-2-1-3         Access: Open Access Read More

Author(s): Reena Rawat

DOI:         Access: Open Access Read More

Author(s): Sandhya Bhardwaj; Abhishek Kumar Singh; Ashish Kumar Jha; Aman Kumar

DOI: 10.55878/SES2023-3-1-10         Access: Open Access Read More

Author(s): Ruchi Sharma

DOI: 10.55878/SES2022-2-1-5         Access: Open Access Read More

Author(s): Umika Verma

DOI: 10.55878/SES2024-4-1-16         Access: Open Access Read More

Author(s): Roli Jain

DOI: 10.55878/SES2022-2-1-6         Access: Open Access Read More

Author(s): Karan Kumar Giri; Abhishek Singh; Mohammad Intiyaj Alam; Basanta Mahato

DOI: 10.55878/SES2023-3-1-8         Access: Open Access Read More

Author(s): Ankita Deshlahre; Pragya Kulkarni

DOI: 10.55878/SES2024-4-2-9         Access: Open Access Read More