REFERENCES
1.
Blasse G, Grabmaier BC. Luminescent
materials. Berlin: Springer; 1994.
2.
Feldmann C, Justel T, Ronda CR,
Schmidt PJ. Inorganic luminescent materials: 100 years of research and
application. Adv Funct Mater. 2003;13(7):511–516.
3.
Chevalier J, Gremillard L. Ceramics
for medical applications: Yttria-stabilized zirconia as a biomaterial. J Eur
Ceram Soc. 2009;29(7):1245–1255.
4.
Feng P, Li H, Chen X. Luminescence
of Eu³⁺ doped YSZ ceramics: Defect-related emission and energy transfer. J
Alloys Compd. 2014;602:129–134.
5.
Maitra T, Prasad R. Synthesis and photoluminescence
of rare-earth doped zirconia nanoparticles. Mater Chem Phys.
2015;149–150:275–283.
6.
Maksimov A, et al. Luminescent
properties of Eu³⁺-doped YSZ ceramics fabricated by SPS. J Mater Sci.
2020;55(15):6317–6330.
7.
Jia Q, et al. Upconversion luminescence
in Yb³⁺/Pr³⁺ co-doped YSZ crystals. Opt Mater. 2019;96:109316.
8.
Zhang L, et al. High-temperature
luminescence properties of Eu³⁺ doped YSZ ceramics. Ceram Int.
2020;46(4):4457–4465.
9.
Wang Y, et al. Additively
manufactured luminescent YSZ ceramics for photonic applications. Mater Des.
2021;205:109731.
10.
Valiev D, Khasanov O, Dvilis E,
Stepanov S, Polisadova E, Paygin V. Luminescent properties of MgAl₂O₄ ceramics
doped with rare earth ions fabricated by spark plasma sintering technique. Ceram
Int. 2018;44:20768–20773.
11.
Khasanov OL, Dvilis ES, Polisadova
EF, Stepanov SA, Valiev DT, Paygin VD, et al. The influence of intense
ultrasound applied during pressing on the optical and cathodoluminescent
properties of conventionally sintered YSZ ceramics. Ultrason Sonochem.
2019;50:166–171.
12.
Gutzov S, Bredol M, Wasgestian F.
Cathodoluminescence study of europium-doped zirconia and cassiterite powders. J
Phys Chem Solids. 1998;59:69–74.
13.
Gutzov S, Kohls M, Lerch M. The
luminescence of Zr–Eu–O–N materials. J Phys Chem Solids.
2000;61:1301–1309.
14.
Chen W, Joly AG, Kowalchuk CM, Malm
J-O, Huang Y, Bovin J-O. Structure, luminescence, and dynamics of Eu₂O₃
nanoparticles in MCM-41. J Phys Chem B. 2002;106:7034–7041.
15.
Patra A, Sominska E, Ramesh S,
Koltypin Y, Zhong Z, Minti H, et al. Sonochemical preparation and
characterization of Eu₂O₃ and Tb₂O₃ doped in and coated on silica and alumina
nanoparticles. J Phys Chem B. 1999;103:3361–3365.
16.
Speghini A, Bettinelli M, Riello P,
Bucella S, Benedetti A. Preparation, structural characterization, and
luminescence properties of Eu³⁺-doped nanocrystalline ZrO₂. J Mater Res.
2005;20:2780–2791.
17.
Smits K, Grigorjeva L, Millers D,
Sarakovskis A, Opalinska A, Fidelus JD, Lojkowski W. Europium doped zirconia
luminescence. Opt Mater. 2010;32:827–831.
18.
Hui Y, Zhao Y, Zhao S, Gu L, Fan X,
Zhu L, et al. Fluorescence of Eu³⁺ as a probe of phase transformation of
zirconia. J Alloys Compd. 2013;573:177–181.
19.
Hui Y, Zou B, Liu S, Zhao S, Xu J,
Zhao Y, et al. Effects of Eu³⁺-doping and annealing on structure and
fluorescence of zirconia phosphors. Ceram Int. 2015;41:2760–2769.
20.
Zhang AY, Lü MK, Qiu ZF, Zhou YY, Ma
Q. Multiband luminescence of Eu³⁺ based on Y₂Zr₂O₇ nanocrystals. Mater Chem
Phys. 2008;109:105–108.
21.
Liao JS, Zhou D, Yang B, Liu RQ,
Zhang Q. Sol-gel preparation and photoluminescence properties of tetragonal
ZrO₂:Y³⁺, Eu³⁺ nanophosphors. Opt Mater. 2012;35:274–279.
22.
Boffelli M, Zhu W, Back M, Sponchia
G, Francese T, Riello P, et al. Oxygen hole states in zirconia lattices:
Quantitative aspects of their cathodoluminescence emission. J Phys Chem A.
2014;117:9828–9836.